CHEMIE DER CARBONYLNIOBVERBINDUNGEN

X *. NEUE HYDRIDOCARBONYLKOMPLEXE DES VANADIUMS, NIOBS UND TANTALS **

DIETER REHDER*, PETER OLTMANNS, MARTIN HOCH, CAROLA WEIDEMANN und WOLFGANG PRIEBSCH

Institut für Anorganische Chemie der Universität, D-2 Hamburg 13, Martin-Luther-King-Platz 6 (B.R.D.) (Eingegangen den 16. Dezember 1985)

Summary

Complexes of the general formula $HM(CO)_n$ (oligophos) (M = V, n = 2; M = Nb, n = 3 and 2; M = Ta, n = 3) have been prepared by ion exchange on silica gel from their ionic precursors [Et₄N][M(CO)_{4,3}(oligophos)] (n = 3) or by UV irradiation of $HM(CO)_{n+1}$ (oligophos) (n = 2). The new compounds, including fac-[Et₄N]-[Nb(CO)₃PPh(CH₂CH₂PPh₂)₂] and cis-[Et₄N][Ta(CO)₄PPh(CH₂CH₂PPh₂)₂], are characterized by their IR (ν (CO)), ¹H (hydride), ³¹P and metal (⁵¹V and ⁹³Nb) NMR spectra.

Zusammenfassung

Die Komplexe der allgemeinen Formel $HM(CO)_n(oligophos)$ (M = V, n = 2; M = Nb, n = 3 und 2; M = Ta, n = 3) wurden durch Ionenaustausch auf Kieselgel aus ihren ionischen Vorläufern $[Et_4N][M(CO)_{4,3}(oligophos)]$ (n = 3) oder durch UV-Bestrahlung der Spezies $HM(CO)_{n+1}(oligophos)$ (n = 2) dargestellt. Die neuen Komplexe, darunter auch $fac-[Et_4N][Nb(CO)_3PPh(CH_2CH_2PPh_2)_2]$ und $cis-[Et_4N][Ta(CO)_4PPh(CH_2CH_2PPh_2)_2]$, werden durch ihre IR ($\nu(CO)$), ¹H- (Hydrid), ³¹P- und Metall- (⁵¹V und ⁹³Nb) NMR-Spektren charakterisiert.

Einleitung

Hydridocarbonylkomplexe der Metalle der Vanadiumtriade sind geeignete Vorläufer für die Darstellung verschiedenartiger Folgeprodukte. Die Komplexe der

^{*} Für Teil IX s. Lit. 3.

^{**} Prof. Dr. E. Weiss zum 60. Geburtstag am 9. Juli 1986 gewidmet.

allgemeinen Zusammensetzung HM(CO)_{6-n} P_n (n = 2-4), in denen P_n ein stabilisierender, n-zähniger Phosphinligand ist, können – ausgehend von den ionischen Komplexen $[Et_4N][M(CO)_{6,m}P_n]$ (m = 4 oder 3) – besonders schonend und in besten Ausbeuten durch Ionenaustausch-Chromatografie auf Kieselgel hergestellt werden [1-3]. Typische Reaktionen, die in erster Linie mit Vanadiumverbindungen durchgeführt wurden, sind die licht-induzierte Umsetzung mit Cobaltdinitrosylhalogeniden zu den carbonylfreien Komplexen $[V(NO)_2L_4]^+$ und $[V(NO)_2L_3X]$ [4], die thermische Zersetzung zu paramagnetischen Neutralkomplexen [5,6], die Umsetzung mit Butadienen, die entweder zu Neutralkomplexen oder zu η^3 -Allylkomplexen führt [6], und schliesslich die durch UV-Bestrahlung unterstützte Hydridübertragung auf den exocyclischen Kohlenstoff von Pentafulvenen, d.h. die Bildung ringsubstituierter Derivate des η^5 -C₅H₅V(CO)₄ [7]. Bei den mit $HV(CO)_{4}dppe (dppe = Ph_{2}PCH_{2}CH_{2}PPh_{2}) durchgeführten Reaktionen wird häufig$ eine zusätzliche, durch eine IR-Absorption bei 1742 cm⁻¹ charakterisierte Spezies beobachtet, die nicht mit dem bekannten Komplex trans- $[V(CO)_2(dppe)_2][8](\nu(CO))$ in THF: 1735 cm⁻¹) identisch ist. Wir haben das zum Anlass genommen, das Verhalten einiger bekannter und neuer Hydridokomplexe des V, Nb und Ta bei der Bestrahlung mit UV-Licht und in Abwesenheit möglicher H-Akzeptoren zu untersuchen. In den meisten Fällen hat sich die Metall-Hydrid-Bindung dabei als grundsätzlich fotostabil erwiesen.

Ergebnisse und Diskussion

$HV(CO)_{6-n}(dppe)$, (vergl. Schema 1)

Die interne UV-Bestrahlung einer THF-Lösung von HV(CO)₄dppe (1) (ν (CO) 1990m und 1878vs cm⁻¹) führt, bei Konzentrationen von 0.04 *M*, schon nach ca. 30 min zu einer neuen, durch CO-Absorptionen bei 1820 und 1755 cm⁻¹ charakterisierten, dunkelroten Substanz, die gemäss den Ergebnissen NMRspektroskopischer Messungen (δ (³¹P) +95 und +74 ppm; δ (⁵¹V) -1475 ppm, Halbwertsbreite $W_{1/2}$ 4.2 kHz) diamagnetisch ist. Der Vergleich der spektroskopischen Daten mit denen der authentischen Verbindung *cis*-[HV(CO)₂PP₃] (PP₃ = P(CH₂CH₂PPh₂)₃) [1] weisen auf die Bildung des Komplexes *cis*-[HV(CO)₂(dppe)₂] (2) hin. Die ³¹P-NMR-Signale für die beiden Paare nicht-äquivalenter Phosphor-

SCHEMA 1

TABELLE 1 SPEKTROSKOPISCHE DATEN ^a

Komplex ^b	ν(CO) (cm ⁻¹)	$\delta(^{1}H)^{c}$ (ppm)	$J({}^{1}H-{}^{31}P)$ (Hz)	Sonstige ^d
HV(CO) ₃ P ₃	1905s, 1806m	-4.54 (td)	40, 20	-1640: ⁵¹ V
HNb(CO) ₃ P ₃ (8)	1920m, 1820vs	-2.94 (td)	31, 12	+76.5, +63.5, +60.2: ³¹ P
HTa(CO) ₃ P ₃ (15)	1935m, 1810s	-2.33 (td) ^e	37, 18	
$HNb(CO)_{3}P_{4}$ (12)	1928m, 1815s	– 2.78 ([td]) ^f	33, 10	
HNb(CO) ₃ PP ₃ (10)	1920m, 1815s	- 3.04	30.5, 11	+78.5, +68.5, +63.2: ³¹ P; -1100: ⁹³ Nb
$t-[HV(CO)_2P_4]$	1884vw, 1764s	-3.62 (tt)	113, 18	+111, $+98$: ³¹ P; -1670 : ⁵¹ V
$t-[HNb(CO)_2P_4](13)$	1772	-1.33 ([tt]) ^g		11.5 ^g -990: ⁹³ Nb
cis-[HV(CO) ₂ PP ₃]	1829s, 1772s	- 3.84 (qd)	37, 9.5	-1540: ⁵¹ V
cis-[HNb(CO) ₂ PP ₃] (11)	1860s, 1790s	-1.61 (qd)	26, ca. 3	+77.4, $+74.3$, $+71.6$: ³¹ P ^{<i>h</i>}

^a Alle Daten in THF bei Raumtemperatur (IR) bzw. 300(2) K (¹H- und Metall-NMR) bzw. 200–220 K (³¹P-NMR). Zu den Vergleichsdaten der nicht in dieser Arbeit beschriebenen Komplexe vergl. Lit. 1–3. ^b Abkürzungen: P₃ = PhP(CH₂CH₂PPh₂)₂, P₄ = [Ph₂PCH₂CH₂PPhCH₂]₂, PP₃ = P(CH₂CH₂PPh₂)₂. ^c Das Kopplungsmuster ist in Klammern angegeben: td = Triplett von Dubletts, tt = Triplett von Tripletts, qd = Quartett von Dubletts. ^d Angegeben sind – soweit vermessen – die ³¹P- (rel. H₃PO₄), ⁵¹V- (rel. VOCl₃) und ⁹³Nb-NMR Werte (rel. NbOCl₃). ^e Die beiden zentralen Peaks liegen bei – 2.22 und –2.44 ppm (300 K). Die Messung wurde bei 80 und 400 MHz vorgenommen. Zum Verhalten unterhalb 230 K s. Text. ^f Die beiden zentralen Komponenten liegen in Form zweier um 4 Hz (0.06 ppm) gegeneinander verschobener Dubletts (Kopplungskonstante ca. 10 Hz) vor. ^g Die Kopplung zu den mittelständigen, weiter entfernt stehenden Phosphorfunktionen (vergl. P_B im Schema 2) ist nicht aufgelöst. ^h Im Verhältnis P_B/(P_A + P_{A''})/P_{A'} = 1/2/1 (zur Indizierung der Phosphoratome vergl. Schema 2).

atome $P_{A,A'}$ und $P_{B,B'}$ (vergl. Schema 1) zeigen angedeutete Triplettstruktur; die ${}^{2}J(PP)$ -Kopplung liegt mit ca. 30 Hz im Bereich dessen, was erwartet werden kann [9].

Näheren Aufschluss über die Bildung möglicher Zwischenprodukte liefert die recht viel mildere, externe Bestrahlung. Auch hier werden unter Erhalt der Vanadium-Wasserstoff-Bindung V-CO und V-P-Bindungen gespalten und durch nachfolgende Neuorientierung neue Vanadium-Phosphor-Bindungen geknüpft. Als Intermediate können – auf Grund des Vergleichs der IR-Daten mit analogen Verbindungen [1] (s.a. Tab. 1) – die Komplexe $HV(CO)_3(dppe)_2$ (3, $\nu(CO)$ 1927 und 1807 cm⁻¹) und *trans*-[HV(CO)₂(dppe)₂] (4, 1742 cm⁻¹) identifiziert werden. Bei längerer Bestrahlung erfolgt Fotoisomerisierung zum stabilen Endprodukt 2.

 $HNb(CO)_{6-n}P_n$ (n = 2-4)

Die spektroskopischen Daten dieser Verbindungen sowie des Komplexes $HTa(CO)_3P_3$ (vergl. den nächsten Abschnitt;) sowie einiger Lit. [1] and [3] entnommener Vergleichsdaten sind in Tabelle 1 zusammengestellt.

Im Unterschied zum $HV(CO)_4$ dppe, das stabil ist und durch eine Röntgenstrukturanalyse charakterisiert werden konnte [10], geht das labile $HNb(CO)_4$ dppe [3] bei der internen UV-Bestrahlung in THF im wesentlichen in nicht näher definierte, unlösliche Zersetzungsprodukte über. Aus der Lösung können geringe Menge eines ockerfarbenen Pulvers isoliert werden, das nur eine CO- Valenzschwingung bei 1775 cm⁻¹ zeigt und daher als *trans*-[HNb(CO)₂(dppe)₂] (5) formuliert wird.

Bei der Bestrahlung von $[Et_4N][Nb(CO)_6]$ in Gegenwart des dreizähnigen Phosphins PhP(CH₂CH₂PPh₂)₂ (P₃) entsteht neben *cis*-[Nb(CO)₄P₃] (**6**; vergl. Lit. [3]) auch *fac*-[Et₄N][Nb(CO)₃P₃] (**7**), das teils im Verlaufe der Bestrahlung als rotes Pulver anfällt, teils mit n-Pentan aus der THF-Lösung gefällt werden kann. Die Zuweisung der facialen Konfiguration (C_{3v}) erfolgt auf der Grundlage der IR-Spektren (zwei annähernd intensitätsgleiche Banden bei 1812 und 1718 cm⁻¹, in CH₃CN) und des vergleichsweise scharfen ⁹³Nb-NMR-Signals [δ (⁹³Nb) – 1490 ppm; Halbwertsbreite $W_{1/2}$ 2.5 kHz. Übliche $W_{1/2}$ liegen in dieser Verbindungsgruppe bei etwa 10 kHz)]: Das Punktladungsmodell, wenngleich für diese Komplexe nur eingeschränkt anwendbar, sagt für lokale C_{3v} -Symmetrie voraus, dass – ebenso wie in kubischen Systemen – der Feldgradient am Kernort verschwindet und die sonst sehr effektive Quadrupolrelaxation somit nicht zum Tragen kommt. Wir haben dieses Phänomen früher schon für die Unterscheidung z.B. der isomeren Komplexe *mer/fac*-[V(CO)₃hexaphos]⁻ durch deren ⁵¹V-NMR-Spektren herangezogen [2].

 $HNb(CO)_{3}P_{3}$ (8) ist aus einer Mischung von 6 und 7 auf Kieselgel zugänglich. Die weitere, externe Bestrahlung führt zu einer Lösung, aus der mit Pentan ockerfarbenes bis orangerotes *cis*-[HNb(CO)₂(P₃)₂] (9) gefällt werden kann. In Übereinstimmung mit den für die *cis*-Konfiguration zu erwartenden spektroskopischen Charakteristika werden zwei intensitätsgleiche CO-Schwingungen bei 1845 und 1780 cm⁻¹ sowie zwei ebenfalls intensitätsgleiche ³¹P-Resonanzen bei +64.4 und +54.1 ppm für die koordinierten PPh₂- (P_A) bzw. PPh- (P_B) Gruppen (vergl. Schema 2) beobachtet.

Ein cis-konfigurierter Dicarbonylkomplex (11) wird auch mit dem tetratertiären PP₃ gebildet: Die interne UV-Bestrahlung von HNb(CO)₃PP₃ (10; vergl. Lit. [3]) ergibt eine dunkel-rotbraune Lösung und einen hellroten, in THF nur mässig löslichen Niederschlag. Letzterer zeigt im Hydridbereich des ¹H-NMR-Spektrums ein bei -1.16 ppm zentriertes Quartett von Dubletts, also ein ${}^{1}H-{}^{31}P-Kopp$ lungsmuster, das dem X-Teil eines A3BX-Spinsystems und somit einem Komplex mit cis-ständigen CO-Gruppen entspricht. Die Kopplungskonstanten sind mit $J(H-P_A)$ 26 und $J(H-P_B)$ ca. 3 Hz deutlich kleiner als im vergleichbaren Vanadiumkomplex (Tab. 1). Bei Zugrundelegung eines einfach flächenverkappten Oktaeders als Grundstruktur für die Hydridokomplexe [1-3] sind die möglichen Positionen des Hydridliganden in der Verbindung 11 beschränkt auf solche Oktaederflächen, deren Kanten nicht durch die Chelatstruktur überspannt werden. Damit verbleiben zwei Anordnungen für H⁻, die bei Raumtemperatur in raschem Austausch stehen und zur Äquilibrierung der im Schema 2 mit PA gekennzeichneten Phosphorfunktionen Anlass geben. Bei 215 K ist ein solcher Austausch offenbar nicht mehr möglich: die P_A werden, wie das Auftreten dreier Signale im ³¹P-NMR-Spektrum zeigt, inäquivalent. Ein vergleichbares Phänomen haben wir kürzlich für den Komplex 8 beschrieben [3].

Die IR-Charakteristika der bei der Bestrahlung von 10 ebenfalls anfallenden rotbraunen Lösung (ν (CO) 1830s, 1763s cm⁻¹) lassen auch hier auf einen Dicarbonylkomplex mit zwei *cis*-ständigen CO-Gruppen schliessen. Wir konnten von dieser Verbindung jedoch kein Hydridsignal registrieren; der Komplex ist gleichwohl diamagnetisch: Im ⁹³Nb-NMR-Spektrum wird ein Signal bei – 1110 ppm, $W_{1/2}$ ca. 15 kHz, beobachtet.

SCHEMA 2

Im Gegensatz zu HNb(CO)₃PP₃ wird bei der Bestrahlung des Komplexes HNb(CO)₃P₄ (12) trans-[HNb(CO)₂P₄] (13; s. Schema 2) gebildet. Die Hydridresonanz (-1.33 ppm) ist zu einem Triplett mit verbreiterten Komponenten aufgespalten; nur die Kopplung zu den endständigen PPh₂-Gruppen (P_A) ist aufgelöst. Sie liegt mit 11.5 Hz erheblich unter der von trans-[HV(CO)₂P₄] (113 Hz). Bezüglich der Abschirmung des Protons im Hydridliganden wird, wie in der Reihe der Vanadiumkomplexe [1], eine Abnahme vom HNb(CO)₃tetraphos zum HNb(CO)₂tetraphos (tetraphos = P₄ und PP₃) beobachtet.

$HTa(CO)_3P_3$

Die Bestrahlung von $[Et_4N][Ta(CO)_6]$ in THF in Gegenwart des Phosphins P₃ führt zu *cis*- $[Et_4N][Ta(CO)_4P_3]$ (14; ν (CO) 1898m, 1790s, 1780sh, 1745sh cm⁻¹), das als rotes Pulver isoliert werden kann. Auf Kieselgel geht die THF-Lösung dieses phosphinstabilisierten ionischen Komplexes über in ein Gemisch aus HTa(CO)₄P₃ und HTa(CO)₃P₃ (15); nach etwa eintägigem Stehen bei 0°C ist die vollständige Umwandlung zum Tricarbonylkomplex vollzogen. Die IR-Banden (1935m und 1810s cm⁻¹) sind vergleichbar denen des entsprechenden Niobkomplexes 8. Wie dort kann wegen der beträchtlichen Breite der CO-Absorptionen nicht sicher auf die Konfiguration (meridional oder facial) geschlossen werden. Das Hydridsignal ist mit -2.35 ppm gegenüber HNb(CO)₃P₃ (-2.94) und HV(CO)₃P₃ (-4.54) zu niederem

Fig. 1. 80 MHz ¹H-NMR-Spektrum (Hydridbereich) von HTa(CO)₃P₃ (15) in THF.

Fig. 2. Die Abbildung zeigt die fünf möglichen Positionen des Hydridliganden des Komplexes HTa(CO)₃P₃ (15) im flächenverkappten Oktaeder. Hierbei wird davon ausgegangen, dass nur solche Flächen verkappt werden können, deren Kante(n) nicht durch den Chelatliganden überspannt sind [1-3]. Bei Raumtemperatur stehen alle fünf Formen in raschem Austausch und es resultiert das in Fig. 1 gezeigte Triplett von Dubletts, wobei die (grössere) Triplettaufspaltung von der Kopplung des Hydridliganden zu den mit P^{*}, die Dublettaufspaltung von den mit P^o gekennzeichneten Phosphoratomen herrührt. Entscheidend für die Unterschiede in der Grösse der Kopplungskonstanten ist die Entfernung des H⁻ von den Phosphoratomen; deren chemische Nichtäquivalenz (zentrale bzw. endständige Phosphorfunktion) spielt dagegen keine unmittelbare Rolle. Bei tiefen Temperaturen werden offenbar die Formen 12 und 112 fixiert; die Kopplung zu P^o sinkt unter die Auflösungsgrenze und man erhält zwei (verbreiterte) Tripletts (Fig. 1).

Feld (höherer Frequenz) verschoben. Das Kopplungsmuster (Fig. 1) ist vergleichbar dem des HV(CO)₃P₃ [A₂BX mit $J(H-P_B) = 1/2J(H-P_A)$], nicht jedoch mit dem des HNb(CO)₃P₃ (Tabelle 1). Zwar wird auch für den Niobkomplex ein A₂BX-Spinsystem beobachtet; die Kopplungskonstanten stehen jedoch in keiner einfachen Relation zueinander. Während im HNb(CO)₃P₃ das Hydridsignal bei 210 K kollabiert und bei weiterer Temperaturerniedrigung zwei stark verbreiterte Dubletts auftreten [3], beobachtet man beim Abkühlen einer THF-Lösung des HTa(CO)₃P₃ ab ca. 230 K den Zusammenbruch der Dublett-Kopplung und zugleich die Separierung in zwei sich bei weiterem Absenken der Temperatur unterschiedlich rasch verbreiternde Tripletts (-2.36 und -2.57 ppm, Kopplungskonstanten 39 Hz; bei 220 K; Fig. 1). Ein solches Verhalten liesse sich durch Einfrieren der Formen I2 und II2 der in Fig. 2 ausgeführten fünf möglichen und bei Raumtemperatur in raschem Austausch stehenden Isomeren erklären. Hierbei ist die faciale Anordnung des Phosphinliganden im zentralen Pseudooctaeder zugrundegelegt.

Experimenteller Teil

Alle Operationen wurden unter Stickstoff oder Argon und in hochgereinigten Lösungsmitteln durchgeführt. UV-Bestrahlungen wurden mit einer Quecksilber-Hochdrucklampe (Philips HPK 125, Fa. Mangels) im wassergekühlten Quarzrohr vorgenommen, und zwar entweder intern, d.h. durch Einstellen des Tauchrohres in die Reaktionslösung, oder extern durch Aussenbestrahlung der im Duran-Schlenkrohr befindlichen Lösung. Typische Bestrahlungszeiten bei Konzentrationen um 0.05 M lagen bei 30 min (intern) bzw. 90 min (extern).

 $[Na(diglyme)_2][M(CO)_6]$ (M = Nb, Ta) wurden nach einer Vorschrift von Calderazzo [11] durch Normaldrucksynthese aus MCl₅ und Mg/Zn in Pyridin hergestellt und wie in Lit. [3] beschrieben in die beständigen, gelben Tetraethylammoniumverbindungen überführt. Die Darstellung der Komplexe [Et₄N]- $[M(CO)_n(oligophos)]$ und HM(CO)_n(oligophos) erfolgte in Analogie zu den in Lit. [1-3] beschriebenen Verfahren auf photochemischem Wege (Hydridokomplexe mit n = 2 und ionische Verbindungen) bzw. durch Austauschchromatografie auf Kieselgel 60 (Fa. Merck), das durch zweistündiges Abpumpen am Ölpumpenvakuum, fünfstündiges Evakuieren bei 0.01 Torr, Belegen mit N₂ und Aufschlämmen in THF vorbehandelt worden war. Die Isolierung der ockerfarbenen bis roten Komplexe wurde durch Ausfällen mit n-Pentan aus den THF-Lösungen, die Reinigung durch mehrfaches Umfällen aus THF/Pentan vorgenommen. *cis*-[HNb(CO)₂PP₃] (11) fällt bereits während der Bestrahlung von HNb(CO)₃PP₃ (10) und beim Einengen der THF-Lösung als rotes Pulver aus.

IR-Spektren wurden an einem Perkin-Elmer 557 Spektrometer als 0.02–0.04 M THF- oder (7) CH₃CN-Lösungen in 0.1 mm KBr-Küvetten mit einer Genauigkeit von ± 2 cm⁻¹ vermessen. ³¹P-NMR-Spektren wurden bei 36.44 MHz auf einem Bruker WH 90 Spektrometer erhalten. Die Daten wurden, um Relaxationsentkopplung des ³¹P mit den Quadrupolkernen ⁵¹V (Kernspin I = 7/2) bzw. ⁹³Nb (I = 9/2) zu gewährleisten, zwischen 200 und 220 K aufgenommen. ⁵¹V- und ⁹³Nb-NMR-Spektren wurden in ca. 0.2 M bzw. (11) gesättigter Lösung bei 16 MHz an einem Bruker SWL 3-100 Wideline-Gerät bei einem zentralen Magnetfeld von 1.43 (⁵¹V) bzw. 1.54 T (⁹³Nb) und 300(2) K aufgenommen und gegen die Standards VOCl₃ (rein) bzw. [Et₄N][NbCl₆]/CH₃CN vermessen. Die Angabe der Werte δ (⁵¹V) und

26

 $\delta(^{93}\text{Nb})$ erfolgt relativ zu VOCl₃ ($\delta = 0$) bzw. NbOCl₃ ($\delta = 0$; $\delta[\text{NbCl}_6]^- + 460$ ppm) mit einer Genauigkeit von ± 10 (⁵¹V) bis ± 40 (⁹³Nb) ppm.

Dank

Dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Literatur

- 1 U. Puttfarcken und D. Rehder, J. Organomet. Chem., 185 (1980) 219.
- 2 D. Rehder und U. Puttfarcken, Z. Naturforsch. B, 37 (1982) 348.
- 3 K. Bachmann und D. Rehder, J. Organomet. Chem., 276 (1984) 177.
- 4 F. Näumann und D. Rehder, Z. Naturforsch. B, 39 (1984) 1647 und 1654.
- 5 J.E. Ellis und R.A. Faltynek, J. Organomet. Chem., 93 (1975) 205.
- 6 U. Franke und E. Weiss, J. Organomet. Chem., 152 (1978) C19.
- 7 D. Wenke und D. Rehder, J. Organomet. Chem., 273 (1984) C43.
- 8 H. Behrens und K. Lutz, Z. Anorg. Allgem. Chem., 356 (1967) 225.
- 9 D. Rehder und H.-Ch. Bechthold, Z. Naturforsch. B, 39 (1984) 323.
- 10 T. Greiser, U. Puttfarcken und D. Rehder, Trans. Met. Chem., 4 (1979) 168.
- 11 F. Calderazzo, U. Englert, G. Pampaloni, G. Pelizzi und R. Zamboni, Inorg. Chem., 22 (1983) 1865.